Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex

نویسندگان

  • Jorge F Mejias
  • John D Murray
  • Henry Kennedy
  • Xiao-Jing Wang
چکیده

Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inter-areal Balanced Amplification Enhances Signal Propagation in a Large-Scale Circuit Model of the Primate Cortex.

Understanding reliable signal transmission represents a notable challenge for cortical systems, which display a wide range of weights of feedforward and feedback connections among heterogeneous areas. We re-examine the question of signal transmission across the cortex in a network model based on mesoscopic directed and weighted inter-areal connectivity data of the macaque cortex. Our findings r...

متن کامل

Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas

Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and we correlat...

متن کامل

The Electromyographic Feedback and Feedforward Activity of Selected Lower Extremity Muscles During Toe-in Landing in Female Athletes

Background: Positioning the legs in performing spike technique significantly contributes to the development and prevention of lower limb injuries. The present study aimed to evaluate and compare the feedback and feedforward activaties of selected lower limb muscles during triple jump spike with and without toe-in landing in female volleyball players. Methods: In this controlled-laboratory stud...

متن کامل

Causal in ̄uences in primate cerebral cortex during visual pattern discrimination

Anatomical studies of the visual cortex demonstrate the existence of feedforward, feedback and lateral pathways among multiple cortical areas. Yet relatively little evidence has previously been available to show the causal in ̄uences of these areas on one another during visual information processing. We simultaneously recorded event-related local ®eld potentials (LFPs) from surface-to-depth bipo...

متن کامل

Interaction of feedforward and feedback streams in visual cortex in a firing-rate model of columnar computations

Visual sensory input stimuli are rapidly processed along bottom-up feedforward cortical streams. Beyond such driving streams neurons in higher areas provide information that is re-entered into the representations and responses at the earlier stages of processing. The precise mechanisms and underlying functionality of such associative feedforward/feedback interactions are not resolved. This work...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016